Gene expression and enzymatic activity of pectin methylesterase during fruit development and ripening in Coffea arabica L.

نویسندگان

  • S M B Cação
  • T F Leite
  • I G F Budzinski
  • T B dos Santos
  • M B S Scholz
  • V Carpentieri-Pipolo
  • D S Domingues
  • L G E Vieira
  • L F P Pereira
چکیده

Coffee quality is directly related to the harvest and post harvest conditions. Non-uniform maturation of coffee fruits, combined with inadequate harvest, negatively affects the final quality of the product. Pectin methylesterase (PME) plays an important role in fruit softening due to the hydrolysis of methylester groups in cell wall pectins. In order to characterize the changes occurring during coffee fruit maturation, the enzymatic activity of PME was measured during different stages of fruit ripening. PME activity progressively increased from the beginning of the ripening process to the cherry fruit stage. In silico analysis of expressed sequence tags of the Brazilian Coffee Genome Project database identified 5 isoforms of PME. We isolated and cloned a cDNA homolog of PME for further characterization. CaPME4 transcription was analyzed in pericarp, perisperm, and endosperm tissues during fruit development and ripening as well as in other plant tissues. Northern blot analysis revealed increased transcription of CaPME4 in the pericarp 300 days after flowering. Low levels of CaPME4 mRNAs were observed in the endosperm 270 days after flowering. Expression of CaPME4 transcripts was strong in the branches and lower in root and flower tissues. We showed that CaPME4 acts specifically during the later stages of fruit ripening and possibly contributes to the softening of coffee fruit, thus playing a significant role in pectin degradation in the fruit pericarp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Specific Localization of Pectin–Ca2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato (Solanum lycopersicum)

Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major cha...

متن کامل

Molecular characterization and functional analysis of the β-galactosidase gene during Coffea arabica (L.) fruit development.

β-D-Galactosidase (EC 3.2.1.23) has been detected in several plant species, and is characterized in different organs and tissues by its ability to hydrolyse terminal non-reducing β-D-galactosyl residues from β-D-galactoside polymers. In the present paper the cloning and the biochemical and molecular characterization of Coffea arabica β-galactosidase expressed in the pericarp and the endosperm o...

متن کامل

An Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit.

Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA sho...

متن کامل

Molecular cloning of tomato pectin methylesterase gene and its expression in rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits.

We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a lambdagtll expression library constructed from MG pericarp poly(A)(+) RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is...

متن کامل

Biosynthesis of chlorogenic acids in growing and ripening fruits of Coffea arabica and Coffea canephora plants.

Chlorogenic acids are major secondary metabolites found in coffee seeds. The accumulation of chlorogenic acids and free quinic acids was studied in Coffea arabica cv. Tall Mokka and Coffea canephora seeds. Growth stages are specified from I to V, corresponding to rapid expansion and pericarp growth (I), endosperm formation (II), mature (green) (III), ripening (pink) (IV), and fully ripened (red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 11 3  شماره 

صفحات  -

تاریخ انتشار 2012